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Abstract. The complex structure of a spin-glass state space can be simplified by a coarse-
graining procedure, i.e. microscopic states being assembled into larger clusters. An algorithm
for the coarse graining of the state space of a short-range Ising spin glass is provided,
which is the basis of a coarse-grained dynamics. Different ways for modelling the transition
rates in the coarse-grained state space are discussed. A comparison with the dynamics of
the microscopic system shows that the dynamics in the coarse-grained state space gives an
appropriate approximation.

1. Introduction

The complex energy landscape in the state space of spin glasses is a key feature for their
dynamic properties. One important ingredient is the existence of a large number of local
minima which are separated by energy barriers of different heights. The relaxation at low
temperatures is characterized by a slow transition over these barriers. As in typical spin-
glass experiments the thermodynamic equilibrium is not reached on macroscopic timescales,
non-equilibrium phenomena can be observed such as aging [1–3] and reinitialization effects
[4–7]. Thus for the understanding of such phenomena, the knowledge of the state-space
structure is of great importance.

The exact enumeration of the state space of complex systems is in most cases impossible,
as the effort required to achieve this increases exponentially with the system size. Even if
it were to be possible, the large number of microscopic states would lead to a very complex
and detailed structure in the configuration space, which constrains computer simulations of
the spin-glass dynamics to small regions in state space.

However, the macroscopic properties of a system should not depend on the microscopic
details of its configuration-space structure. This raises the question of whether or not a
coarse-grained description of a ‘real’ state space is possible without neglecting the features
of interest. For example, it has already been shown that heuristical model state spaces,
where the states are organized on hierarchical trees, show typical features of the dynamics
of complex systems [8–14].

Such a coarse-grained energy landscape could then be used for visualizing the structure
of the state space and is a more sophisticated basis for simulations of the system dynamics
in large systems. The coarse-graining procedure itself will give more insight into the
microscopic dynamical mechanisms in complex energy landscapes. Moreover the coarsening
of the state space can be used to improve optimization algorithms [15].
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In [16] the complex energy landscape of the±J spin-glass model has been simplified
by assembling microscopic states into so-called microcanonical clusters. However, the
definition of the microcanonical clusters is strongly connected to the existence of discrete
energy levels in the model, which do not exist in the more general case of continuously
distributed interactions.

In this paper we present two coarse-graining procedures which should be regarded as
a first step towards the above-defined goal. One procedure is very simple while the other
more complicated one tries to capture more details of the landscape. For both procedures
we will first discuss their common part, namely in which way the microstates are clustered.
We will refer to this as structural coarse graining. In a second step we will then investigate
the relaxation dynamics on the original state space and ways to obtain an appropriate coarse-
grained dynamics for the clustered states (dynamical coarse graining). Such a coarse-grained
dynamics of course neglects the fast local equilibration, but should reproduce the long-time
relaxation over energy barriers at low temperatures.

The quality of the different procedures will be checked by comparing the spectra of
the relaxation times of the original, microscopic system with those of the coarse-grained
systems. The temperature dependence of the largest relaxation times is checked in more
detail.

As an example, we analyse the coarse graining of the configuration space of a short-
range Ising spin glass. We note, however, that the coarse-graining algorithm considered
and the approximation of the dynamics in the phase space do not depend on this choice of
model system.

2. The model

As a realization of a complex system, we consider a short-range 4× 4× 4 Ising spin glass
with periodic boundary conditions. Every statei refers to a spin configuration with energy

Ei = −
∑
〈m,n〉

Jm,nsmsn (1)

where the summation is performed over all pairs of neighbouring Ising spinss which can
have only the values+1 and−1. The interaction constantsJm,n are uniformly distributed
with a zero mean and a standard deviation normalized to unity.

The relaxation dynamics considered is given by thermally activated transitions between
the different states of the spin glass. The possible transitions are given by flipping one spin
at a time. In technical terms this means that if two states differ by one spin only, they
are connected in the state space and are called neighbours. As the thermal fluctuations are
random, the dynamics is described by a master equation

∂pi(t)

∂t
=
∑
j

wijpj (t) (2)

wherepi(t) is the probability of being in statei at the timet andwij with i 6= j is the rate
of transition from statej to statei, whilewii = −

∑
j ( 6=i) wij is the rate of transition out of

statei. The transition rates are such that the stationary probability distribution corresponds
to the Boltzmann distribution.

For this spin-glass model the total number of states (>1019) exceeds the computational
possibilities for an exact enumeration by far. Thus we concentrate on the most interesting
part of the state space which, in the case of low-temperature relaxation, is comprised of
the energetically low-lying states. Therefore we determine all states below a certain cut-off
energy using a branch-and-bound algorithm.
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3. The structural coarse graining

The aim of the structural coarse graining is to assemble sets of microscopic states into
larger clusters. In order to obtain a good approximation for the dynamical properties of
the system on macroscopic timescales, it is important that the inner relaxation in a cluster
is faster than the interaction with the surrounding clusters. In this case the clusters can be
considered to be in internal equilibrium on larger timescales. To fulfil this condition for all
temperatures, a cluster must not contain any energy barriers, because such barriers would
lead to diverging relaxation times in the zero-temperature limit.

Thus the central aim of this paper is to discuss algorithms that guarantee that there are no
internal energy barriers inside a cluster. Furthermore, to make the algorithm independent
of the underlying model it should only use general structural information of the system,
i.e. neighbourhoods and energies. It should not make use of any particular structural
information of the model or any dynamical information such as transition rates.

Figure 1. Left: microscopic states with connections. Right: the coarse-grained state space
obtained from the microscopic states using the algorithm. The number in a square at a connection
is the number of corresponding microscopic connections.

The algorithm for constructing clusters from a microscopic state space is not completely
defined by the above conditions. With the additional restriction that such an algorithm should
result in clusters with maximal size, we arrived at the following procedure.

(i) Sort all states in ascending order in energy.
(ii) Start with one of the lowest-energy states and

– create a cluster to which this state belongs;
– the reference energy of the cluster is the energy of this state;
– create a new valley to which the cluster and the state belong.

(iii) Consider one of the states with equal energy, or if not present, the state with the next
higher energy.

(iv) If the new state is
(a) not a neighbour to states considered yet⇒

– create a new cluster to which the new state belongs;
– the reference energy of the cluster is the energy of the new state;
– create a new valley to which the new cluster and the new state belong;

(b) a neighbour to states which belong to different valleys (such states are here called
barrier states; e.g. 48 or 52 in figure 1)⇒
– link the connected valleys to one new large valley;
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– create a new cluster to which the new state belongs;
– the new cluster belongs to the new large valley;

(c) a neighbour to states which belong to one valley and
(c1) one cluster (e.g. state 6 in figure 1)⇒ the state is added to this cluster;
(c2) different clusters (e.g. state 72 in figure 1)⇒ the state is added to the cluster

with the highest reference energy;

(v) go to step (iii) until all states have been considered.

This procedure was applied to our example spin-glass model. In figure 1 (left) the
structural coarse graining has been applied to a small subsystem with 28 states for dem-
onstration purposes. The resulting coarse-grained system is shown in figure 1 (right), where
the numbers inside a cluster are the numbers of the states which are ‘lumped’ into the
cluster.

Figure 2. The number of microscopic states with an energy belowE−E0 (dashed line) and the
number of clusters resulting from the coarse-graining procedure which start at energies below
E − E0 (solid line). The dotted curve displays the ratio of the number of microstates below
E − E0 to the number of clusters started below this energy.

In figure 2 the total number of microscopic states and of clusters is plotted versusE−E0,
whereE is the energy of the microscopic state andE0 is the energy of the global minimum.
In the energy range considered, the number of clusters increases more slowly than that of the
microscopic states. The mean number of microstates ‘lumped’ into one cluster increases
exponentially, as we can see from the dotted curve. Thus the coarse-graining algorithm
becomes more and more effective for larger energies and thus for larger systems.

Figure 3 shows the dependence of the cluster size (the number of microscopic states
which are ‘lumped’ into the cluster) on the minimum energy of the cluster. It can be clearly
seen that on average the cluster size decreases with increasing energy. The number of
microscopic states inside the clusters which start at small energies is large compared to the
number of microscopic states which are located at such energies (see figure 2). This leads
to the conclusion that the maximum difference of energies of the microscopic states inside
a cluster is large. The clusters are ‘long’ on the energy axis. The clusters starting at higher
energies become smaller, because their parts above the cut-off energy are not considered in
the calculation.
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Figure 3. The number of states in a cluster versus its minimum energy.

4. The dynamical coarse graining: transition rates

Now that the topology of the coarse-grained state space is defined, the appropriate transition
rates of the coarse-grained system have to be determined. To find the structure of these
rates let us start with the exact calculation of the probability of a transition between two
neighbouring clusters starting from the microscopic picture. The probability flux from the
states belonging to clusterCν to the states belonging to clusterCµ is given by

Jµν = WµνPν =
∑

j∈Cν,i∈Cµ
wijpj (3)

wherePν is the total probability of being in clusterCν , i.e. the sum of the probabilities
of all states in clusterCν , andWµν is the rate of transition from clusterCν to cluster
Cµ. Again we assume that the internal relaxation inside the clusters is fast compared to
the relaxation between different clusters. For the timescale of interest all clusters are in
internal equilibrium, i.e.pj ∝ exp(−βEj ). The microscopic transition rates have the form
wij = w0 exp(−βmax(Ei − Ej , 0)). Thus the coarse-grained transition rate is

Wµν =
( ∑
j∈Cν,i∈Cµ

tij exp(−βmax(Ei, Ej ))

)/(∑
i∈Cν

exp(−βEi)
)

(4)

wheretij equals one if the statesi andj are neighbouring and is zero otherwise.
The roughest simplification (here referred to as procedure A) would be to consider all

states of a cluster as one state with a certain energyÊi which is chosen as the mean energy
of the microscopic states. Following this idea, the sums in equation (4) can be simplified
to

Ŵµν = T̂µν min(exp(−β(Êµ − Êν)), 1)

n̂ν
(5)

whereT̂µν is the number of connections between clusterCν and clusterCµ, and n̂ν is the
number of states assembled in clusterCν .

A better approximation can be achieved if each cluster is modelled by a two-level
system, which is in internal equilibrium (procedure B). Here the two sums in (4) become
two sums over two terms each. Instead of the four parametersT̂µν , Êµ, Êν , andn̂ν describing
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a connection between two nodes in procedure A, we here obtain eight parameters (twice
this set, for the higher and lower levels). Due to the higher number of free parameters,
further conditions can be introduced, e.g. that the coarse-grained transition rates match the
microscopic ones at certain temperatures or that the first derivatives of the transition rates
with respect to the temperature are equal.

Here the parameters have been chosen such that the coarse-grained transition rates match
the microscopic ones in the two limiting casesT → 0 andT → ∞. This results in the
following procedure.

The state with the minimal energy in a cluster is assigned to the lower level, while the
rest of the states of the cluster are assigned to the higher level. In the case where there is
more than one state with minimal energy, all of them are assigned to the lower level. The
numbers of microstates in the levels are denoted byn̂L and n̂H , respectively. The levels
are assigned the mean energies of the enclosed microstates and labelled byÊHν and ÊLν ,
respectively.

Each connection between two microstates is assigned the energy of the energetically
higher end-point. Thus the microconnections between two clusters can also be assigned to
two coarse-grained connections. Here we assign the microconnections with the minimal
energy to the lower connection, while the rest of the connections are assigned to the higher
connection. The numbers of microconnections in the coarse-grained connection are denoted
by T̂ Lµν andT̂ Hµν , respectively. The coarse-grained connections are assigned the mean energies

of the enclosed connections and labelled byÊHµν and ÊLµν , respectively.
In this case, equation (4) simplifies to

Ŵµν =
exp(−βÊLµν)
exp(−βÊLν )

T̂ Lµν + T̂ Hµν exp(−β(ÊHµν − ÊLµν))
n̂Lν + n̂Hν exp(−β(ÊHν − ÊLν ))

. (6)

Figure 4. The negative eigenvalues of the transition matrix which correspond to the two largest
relaxation timescales are plotted versus the inverse temperatureβ. The dotted curve refers to the
microscopic system with 3971 states. The solid lines show the two negative eigenvalues for the
coarse-grained system with 371 clusters, where the dynamics was approximated by procedure A
(λA) and procedure B (λB ).

In figure 4 the inverse of the two largest (finite) relaxation times for the coarse-grained
and the microscopic system are plotted. These inverse relaxation timesτ correspond to the
negative eigenvalues of the respective transition matrices. The solid lines show the first two
eigenvalues for procedure A (λA1 andλA2 ) and procedure B (λB1 andλB2 ), respectively. The
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dotted curve corresponds to the microscopic system.
It can be seen that procedure A is quite good for high temperatures, i.e. smallβ, but

gives a too fast relaxation for low temperatures. This behaviour is due to the fact that at
low temperatures most of the probability is situated in the low-energy part of the cluster and
only the connection between the low-lying states contributes to the probability flux while
in the procedure all connections are considered with a uniform weight. Thus the strength
of the connection is overestimated and the relaxation is too fast. A much better agreement
over a wide range of temperatures is obtained with procedure B.

Figure 5. Smoothed relaxation time densities versus the logarithm of the relaxation time for
β = 1 (top) andβ = 4 (bottom) for the microscopic system and the two procedures.

While in the previous paragraph the temperature dependence of the two largest relaxation
times has been analysed, we now consider the whole set of relaxation times for different
temperatures. Figure 5 shows the density of relaxation times forβ = 1 andβ = 4. The
spectra have been computed with a resolution of 0.2 on the logarithmicτ -scale.

In the case of high temperatures (figure 5 (top)) we see a good agreement of the two
procedures compared to the case for the original microscopic system in the range of large
relaxation times. For short times the microscopic system has many more eigenvalues, which
are neglected in the coarse-grained system. Thus the dynamics in the coarse-grained state
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space is a good approximation of the dynamics in the microscopic system for slow processes,
which are the important ones for the analysis of low-temperature relaxation phenomena.

For lower temperatures (figure 5 (bottom)) the density of relaxation times for
procedure A is shifted towards lower values of the relaxation time, i.e. the relaxation is
too fast. This observation has already been made from figure 4. Procedure B is also, for
lower temperatures (largerβ), a good approximation for slow processes.

5. Conclusion

We have provided an algorithm for the coarse graining of complex state spaces. This
technique is independent of the choice of model and can be used not only for Ising spin-
glass models, as demonstrated, but also for other complex systems such as Lennard-Jones
systems and proteins. Coarse graining is not only a means for making the simulation of the
dynamics of large complex systems possible, but is also of importance for the visualization
of the high-dimensional state spaces of complex systems.

The aim was to construct an algorithm which leads to coarse-grained clusters without
any energy barrier inside. The resulting structural coarse graining leads to a sizable reduction
of the system size and thus also in the computational effort needed for obtaining a dynamic
description. This is implemented by an additional coarsening of the dynamics, for which
we provided two procedures. In procedure A, a connection between two clusters was
represented by four parameters while a cluster was represented by only two parameters: its
mean energy and the number of assembled microstates. Due to the large size of the clusters
on the energy axis, the true barrier heights cannot be reproduced in an appropriate fashion.
This drawback can be overcome by a more sophisticated modelling. In procedure B, the
clusters are modelled by a two-level system which keeps track of the energetical size of
the cluster. With this procedure the dynamics of the coarse-grained system is a good
approximation for the slow-relaxation modes over a wide range of temperatures.
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